Ganglion cell losses underlying visual field defects from experimental glaucoma.

نویسندگان

  • R S Harwerth
  • L Carter-Dawson
  • F Shen
  • E L Smith
  • M L Crawford
چکیده

PURPOSE To investigate the relationship between ganglion cell losses and visual field defects caused by glaucoma. METHODS Behavioral perimetry and histology data were obtained from 10 rhesus monkeys with unilateral experimental glaucoma that was induced by argon laser treatments to their trabecular meshwork. After significant visual field defects had developed, the retinas were collected for histologic analysis. The ganglion cells were counted by light microscopy in cresyl violet-stained retina sections, and the percentage of ganglion cell loss (treated to control eye counts) was compared with the depth of visual field defect (treated to control eye thresholds) at corresponding retinal and perimetry test locations. Sensitivity losses as a function of ganglion cell losses were analyzed for Goldmann III, white and Goldmann V, and short- and long-wavelength perimetry test stimuli. RESULTS The relationship between the proportional losses of ganglion cells and visual sensitivity, measured with either white or colored stimuli, was nonlinear. With white stimuli, the visual sensitivity losses were relatively constant (approximately 6 dB) for ganglion cell losses of less than 30% to 50%, and then with greater amounts of cell loss the visual defects were more systematically related to ganglion cell loss (approximately 0.42 dB/percent cell loss). The forms of the neural-sensitivity relationships for visual defects measured with short- or long-wavelength perimetry stimuli were similar when the visual thresholds were normalized to compensate for differences in expected normal thresholds for white and colored perimetry stimuli. CONCLUSIONS Current perimetry regimens with either white or monochromatic stimuli do not provide a useful estimate of ganglion cell loss until a substantial proportion have died. The variance in ganglion cell loss is large for mild defects that would be diagnostic of early glaucoma and for visual field locations near the fovea where sensitivity losses occur relatively late in the disease process. The neural-sensitivity relationships were essentially identical for both white and monochromatic test stimuli, and it therefore seems unlikely that the higher sensitivity for detecting glaucoma with monochromatic stimuli is based on the size-dependent susceptibility of ganglion cells to injury from glaucoma.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural losses correlated with visual losses in clinical perimetry.

PURPOSE The validity of clinical perimetry for evaluation of the pathology of glaucoma is based on correlated losses in retinal ganglion cells and visual sensitivity, but procedures to quantify neural losses from visual field defects have not been developed. The purpose of the present study was to investigate the neural and sensitivity losses from experimental glaucoma to establish the framewor...

متن کامل

Visual field defects and retinal ganglion cell losses in patients with glaucoma.

OBJECTIVE To determine whether the structure-function relationships for glaucoma in humans and experimental glaucoma in monkeys are similar. METHODS The study was based on retinal ganglion cell density and visual thresholds in patients with documented glaucoma. Data were analyzed with a model that predicted ganglion cell density from standard clinical perimetry, which was then compared with h...

متن کامل

Visual field defects and neural losses from experimental glaucoma.

Glaucoma is a relatively common disease in which the death of retinal ganglion cells causes a progressive loss of sight, often leading to blindness. Typically, the degree of a patient's visual dysfunction is assessed by clinical perimetry, involving subjective measurements of light-sense thresholds across the visual field, but the relationship between visual and neural losses is inexact. Theref...

متن کامل

The relationship between nerve fiber layer and perimetry measurements.

PURPOSE Losses of retinal ganglion cells (RGCs) in glaucoma are the cause of visual field defects and thinning of the retinal nerve fiber layer (RNFL), but methods of correlating these events have not been developed. The present study was conducted to investigate the relationship between standard automated perimetry (SAP) measures of RGCs and optical coherence tomography (OCT) measures of the g...

متن کامل

Stem ‍Cells in Glaucoma Management

Glaucoma is the leading cause of preventable blindness worldwide. Despite tremendous advances in medical and surgical management of glaucoma in the recent years, the prevalence of glaucoma related blindness is anticipated to increase in the future decades because of the aging population. Stem cells have the potential to change the glaucoma management in several ways. There are several areas of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 40 10  شماره 

صفحات  -

تاریخ انتشار 1999